On the expectation of the First Theorem in the rough path theory

Terry Lyons (University of Oxford) and Keisuke Hara (Ritsumeikan University)

27 May 2005

Abstract

We show an expectation version of the First Theorem in the rough path theory [1].

Theorem 1 Let $X_{s,t}^{(n)}$ be a multiplicative functional in $T^{(n)}$ (for each path) whose expectation is controlled by a control function $\omega(s,t)$ as follows:

$$E\left[\left\|X_{s,t}^{i}\right\|^{p/i}\right] \le \omega(s,t)^{\theta}, \quad 1 \le i \le p,$$
(1)

for some $\theta > 1$ and p such that [p] = n. Then, there exists a multiplicative extension $X_{s,t}^{(m)}$ to $T^{(m)}$ for m > n that satisfies the following estimates,

$$E\left[\left\|X_{s,t}^{i}\right\|^{p/i}\right] \leq C(i,p)\,\omega(s,t)^{\theta}, \quad i > p,\tag{2}$$

for constants C(i, p), and this extension is unique almost surely.

Proof. First we show the existence by induction. Fix $m \ge [p]$. We suppose that a multiplicative functional

$$X_{s,t}^{(m)} = (1, X_{s,t}^{1}, \dots, X_{s,t}^{[p]}, X_{s,t}^{[p]+1}, \dots, X_{s,t}^{m})$$

satisfies $X_{u,v}^{(m)} \in T^{(m)}, \, X_{u,w}^{(m)} = X_{u,v}^{(m)} \otimes X_{v,w}^{(m)}$, and

$$E\left[\left\|X_{u,v}^{i}\right\|^{p/i}\right] \leq c_{i}\omega(s,t)^{\theta},$$

for all u < v and $i \leq m$.

We want to construct a multiplicative functional $X_{s,t}^{(m+1)}$ satisfying the same estimates.

Consider

$$\widetilde{X}_{s,t} = (1, X_{s,t}^1, \dots, X_{s,t}^{(m)}, \mathbf{0}).$$

Note that $\widetilde{X}_{s,t}$ is in $T^{(m+1)}$, but it is not multiplicative. Fix a dissection $D = \{s \leq t_1 \leq \cdots \leq t_{i-1} \leq t\}$ of [s,t] and define

$$\widetilde{X}_{s,t}^{D} = \widetilde{X}_{s,t_1} \otimes \widetilde{X}_{t_1,t_2} \otimes \cdots \otimes \widetilde{X}_{t_{i-1},t},$$

using the multiplication in $T^{(m+1)}$. We will show the existence of the limit as the mesh of D goes to 0. If it exists, we can show the multiplicative property by taking the limit of the relation:

$$\widetilde{X}^{D}_{s,u} = \widetilde{X}^{D\cap[s,t]}_{s,t} \otimes \widetilde{X}^{D\cap[t,u]}_{t,u}.$$

Our task is to study the last term $(\widetilde{X}^{D}_{s,t})^{(m+1)}$, since the term $(\widetilde{X}^{D}_{s,t})^{i} = X^{i}_{s,t}$ is multiplicative for all $i \leq m$. We want to show

$$E\left[\left\|\left(\widetilde{X}_{s,t}^{D}\right)^{(m+1)}\right\|^{p/(m+1)}\right] \leq c_{m+1}\omega(s,t)^{\theta}.$$

Consider another dissection $D^\prime.$ Then we have the triangle inequality (Note that p/(m+1)<1):

$$E\left[\left\|(\widetilde{X}_{s,t}^{D})^{(m+1)}\right\|^{p/(m+1)}\right] \leq E\left[\left\|(\widetilde{X}_{s,t}^{D} - \widetilde{X}_{s,t}^{D'})^{(m+1)}\right\|^{p/(m+1)}\right] + E\left[\left\|(\widetilde{X}_{s,t}^{D'})^{(m+1)}\right\|^{p/(m+1)}\right].$$

By Lemma 2.2.1, we can choose j such that

$$\omega(t_{j-1}, t_{j+1}) \leq \begin{cases} \frac{2}{r-1}\omega(s, t) & r \ge 3, \\ \omega(s, t) & r = 2, \end{cases}$$

for the dissection $D = \{s = t_0 < t_1 < \cdots < t_r = t\}$. Now let $D' = D \setminus \{t_j\}$ with this point t_j chosen above carefully.

By algebraic computations with the multiplicative property, we have

$$\widetilde{X}_{s,t}^{D} - \widetilde{X}_{s,t}^{D'} = \left(0, \dots, 0, \sum_{i=1}^{m} X_{t_{j-1},t_{j}}^{i} \otimes X_{t_{j},t_{j+1}}^{(m+1)-i}\right).$$

Therefore,

$$E\left[\left\| (\widetilde{X}_{s,t}^{D} - \widetilde{X}_{s,t}^{D'})^{(m+1)} \right\|^{p/(m+1)} \right] \quad \text{(Note that } \frac{p}{m+1} < 1.\text{)}$$

$$\leq \sum_{i=1}^{m} E\left[\left\| X_{t_{j-1},t_{j}}^{i} \right\|^{p/(m+1)} \left\| X_{t_{j},t_{j+1}}^{m+1-i} \right\|^{p/(m+1)} \right]$$

$$\leq \sum_{i=1}^{m} E\left[\left\| X_{t_{j-1},t_{j}}^{i} \right\|^{p/i} \right]^{\frac{i}{(m+1)}} E\left[\left\| X_{t_{j},t_{j+1}}^{(m+1-i)} \right\|^{p/(m+1-i)} \right]^{\frac{(m+1-i)}{(m+1)}}$$

$$\leq \sum_{i=1}^{m} (c_i \omega(t_{j-1}, t_j))^{\frac{i}{m+1}} (c_{m+1-i} \omega(t_j, t_{j+1}))^{\frac{m+1-i}{m+1}} \\ = \sum_{i=1}^{m} c_i^{i/(m+1)} c_{m+1-i}^{(m+1-i)/(m+1)} \left(\omega(t_{j-1}, t_j)^{i/(m+1)} \omega(t_j, t_{j+1})^{(m+1-i)/(m+1)} \right)^{\theta},$$

by Hölder's inequality and our assumption.

Note that

$$\omega(t_{j-1}, t_j) \le \omega(t_{j-1}, t_{j+1}), \quad \omega(t_j, t_{j+1}) \le \omega(t_{j-1}, t_{j+1}),$$

and take c_{m+1} such that

$$\sum_{i=1}^{m} c_i^{i/(m+1)} c_{m+1-i}^{(m+1-i)/(m+1)} \le c_{m+1}.$$

Then we have

$$E\left[\left\| (\tilde{X}_{s,t}^{D} - \tilde{X}_{s,t}^{D'})^{(m+1)} \right\|^{p/(m+1)} \right] \le c_{m+1}\omega(t_{j-1}, t_{j+1})^{\theta}$$

Recall that we chose t_j carefully. Successively dropping points, we have that

$$E\left[\left\| (\widetilde{X}_{s,t}^{D} - \widetilde{X}_{s,t}^{D'})^{(m+1)} \right\|^{p/(m+1)} \right] \leq c_{m+1} \left\{ 1 + \sum_{r=3}^{\infty} \left(\frac{2}{r-1}\right)^{\theta} \right\} \omega(s,t)^{\theta}$$
$$\leq C(\theta) c_{m+1} \omega(s,t)^{\theta},$$

where $C(\theta)$ is a finite constant, which is independent on the choice of the dissection D. Then we have got our basic estimate, which assure that \tilde{X}^D is a Cauchy sequence as mesh(D) goes to 0. In fact, we can follow the argument in the original "First Theorem" as follows.

Consider two dissection D and D' such that $\operatorname{mesh}(D) < \delta$ and $\operatorname{mesh}(D') < \delta$. We can take a common refinement \hat{D} of D and D'. Fix some interval $[t_j, t_{j+1}] \in D$. Then, \hat{D} breaks the interval into $t_j \leq s_{j_1} \leq \cdots \leq s_{j_r} = t_{j+1}$, say \hat{D}_j . Now we know that

$$egin{aligned} & E\left[\left\|\widetilde{X}^{\hat{D}_{j}}-\widetilde{X}
ight\|^{p/(m+1)}
ight] &\leq & c\sum_{j}\omega(t_{j},t_{j+1})^{ heta} \ &\leq & c\left(\sum_{j}\omega(t_{j},t_{j+1})
ight)\cdot\max_{j}\omega(t_{j},t_{j+1})^{ heta-1} \ &\leq & c\omega(s,t)\max_{j}\omega(t_{j},t_{j+1})^{ heta-1}, \end{aligned}$$

which is independent on \hat{D} . Then it converges uniformly to 0 as $\operatorname{mesh}(D) \to 0$. Therefore, the triangle inequality

$$E\left[\left\|\widetilde{X}^{D}-\widetilde{X}^{D'}\right\|^{p/(m+1)}\right] \leq E\left[\left\|\widetilde{X}^{D}-\widetilde{X}^{\hat{D}_{j}}\right\|^{p/(m+1)}\right] + E\left[\left\|\widetilde{X}^{\hat{D}_{j}}-\widetilde{X}^{D'}\right\|^{p/(m+1)}\right]$$

shows that we have established the Cauchy sequence.

Only difference between the original estimate and ours is that our limit is in the sense of

$$E\left[\left\|\widetilde{X}^D - \widetilde{X}^{D'}\right\|^{p/(m+1)}\right] \to 0 \quad \text{ as mesh}(D) \text{ and mesh } (D') \text{ go to } 0.$$

But, since p/(m+1) < 1 and so we have the triangle inequality, we can mimic the usual argument for completeness of γ -th integrable function space. In this sense of the limit, we have also

$$\lim \widetilde{X}^{D,[s,t]} = \lim (\widetilde{X}^{D,[s,u]} \otimes \widetilde{X}^{D,[u,t]}) = (\lim \widetilde{X}^{D,[s,u]}) \otimes (\lim \widetilde{X}^{D,[u,t]}),$$

which shows the limit is multiplicative.

Let us show the uniqueness of the extension. More precisely, we must show that any two multiplicative functional X_{st} and Y_{st} agree almost surely, if they agree up to *m*-th degree (i.e., $X_{st}^i = Y_{st}^i$, $i \leq m$) and if their expectations satisfy our condition in our theorem. Set $\Psi_{st} = X_{st}^{m+1} - Y_{st}^{m+1}$. By Lemma 2.2.3, we know that Ψ_{st} is additive:

$$\Psi_{s,t} + \Psi_{t,u} = \Psi_{s,u}$$

Now we have that

$$E\left[\|\Psi_{0t} - \Psi_{0s}\|^{p/(m+1)}\right] = E\left[\|\Psi_{st}\|^{p/(m+1)}\right] \le c\,\omega(s,t)^{\theta},$$

for a constant c and $\theta > 1$. Note that

$$\omega(s,t) \le \omega(0,t) - \omega(0,s),$$

and that ω is an increasing function. So we can apply time change to have

$$E\left[\|\Psi_{0t'} - \Psi_{0s'}\|^{p/(m+1)}\right] \le c\left(t' - s'\right)$$

in this time scale. The key is that any time change does not change the variational norm.

Now, by the dyadic argument in Hambly-Lyons ([2]), we have

$$\begin{split} \sup_{D} \sum_{j} \|\Psi_{0,t'_{j+1}} - \Psi_{0,t'_{j}}\|^{p/(m+1)} \\ \leq & 2 \sum_{n=1}^{\infty} \sum_{0 \le k < 2^{n}} \|\Psi_{0,(k+1)/2^{n}} - \Psi_{0,k/2^{n}}\|^{p/(m+1)} \end{split}$$

with the triangle inequality (p/(m+1) < 1). Taking the expectation,

$$E\left[\sup_{D}\sum_{j} \|\Psi_{0,t_{j+1}} - \Psi_{0,t_{j}}\|^{p/(m+1)}\right]$$

$$\begin{split} &\leq & 2\sum_{n=1}^{\infty}\sum_{0\leq k<2^n} E\left[\|\Psi_{0,(k+1)/2^n} - \Psi_{0,k/2^n}\|^{p/(m+1)}\right] \\ &\leq & 2c\sum_{n=1}^{\infty}\sum_{0\leq k<2^n} \left|\frac{k+1}{2^n} - \frac{k}{2^n}\right|^{\theta} \\ &= & 2c\sum_{n=1}^{\infty}\sum_{0\leq k<2^n}\frac{1}{2^{n\theta}} = 2c\sum_{n=1}^{\infty}\frac{1}{2^{n(\theta-1)}} < \infty. \end{split}$$

Therefore, we have almost surely

$$\left\|\Psi_{0,t}\right\|_{p/(m+1)-\mathrm{var}} < \infty,$$

on [0,1]. We conclude that $\Psi_{0,t} \equiv 0$, so X = Y almost surely.

References

- Terry J. Lyons. Differential equations driven by rough signals, Revista Mathematica Iberoamericana, 14, No. 2, pp.215–310, 1998.
- [2] B. M. Hambly and T. J. Lyons. Stochastic area for Brownian motion of the Sierpinski gasket, The Annals of Probability, 26, No.1, pp.132–148, 1998.