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Abstract

We show an expectation version of the First Theorem in the rough
path theory [1].

Theorem 1 Let X
(n)
s,t be a multiplicative functional in T (n) (for each path)

whose expectation is controlled by a control function ω(s, t) as follows:

E
h°°Xi

s,t

°°p/ii ≤ ω(s, t)θ, 1 ≤ i ≤ p, (1)

for some θ > 1 and p such that [p] = n. Then, there exists a multiplicative

extension X
(m)
s,t to T (m) for m > n that satisfies the following estimates,

E
h°°Xi

s,t

°°p/ii ≤ C(i, p)ω(s, t)θ, i > p, (2)

for constants C(i, p), and this extension is unique almost surely.

Proof. First we show the existence by induction. Fix m ≥ [p]. We suppose
that a multiplicative functional

X
(m)
s,t = (1,X1

s,t, . . . , X
[p]
s,t, X

[p]+1
s,t , . . . ,Xm

s,t)

satisfies X
(m)
u,v ∈ T (m), X(m)

u,w = X
(m)
u,v ⊗X(m)

v,w , and

E
h°°Xi

u,v

°°p/ii ≤ ciω(s, t)θ,
for all u < v and i ≤ m.

We want to construct a multiplicative functional X
(m+1)
s,t satisfying the same

estimates.
Consider eXs,t = (1,X1

s,t, . . . ,X
(m)
s,t ,0).
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Note that eXs,t is in T (m+1), but it is not multiplicative. Fix a dissection D =
{s ≤ t1 ≤ · · · ≤ ti−1 ≤ t} of [s, t] and define

eXD
s,t =

eXs,t1 ⊗ eXt1,t2 ⊗ · · ·⊗ eXti−1,t,
using the multiplication in T (m+1). We will show the existence of the limit as
the mesh of D goes to 0. If it exists, we can show the multiplicative property
by taking the limit of the relation:

eXD
s,u =

eXD∩[s,t]
s,t ⊗ eXD∩[t,u]

t,u .

Our task is to study the last term ( eXD
s,t)

(m+1), since the term ( eXD
s,t)

i = Xi
s,t

is multiplicative for all i ≤ m. We want to show

E

∙°°°( eXD
s,t)

(m+1)
°°°p/(m+1)¸ ≤ cm+1ω(s, t)θ.

Consider another dissection D0. Then we have the triangle inequality (Note
that p/(m+ 1) < 1):

E

∙°°°( eXD
s,t)

(m+1)
°°°p/(m+1)¸ ≤ E

∙°°°( eXD
s,t − eXD0

s,t )
(m+1)

°°°p/(m+1)¸
+E

∙°°°( eXD0
s,t )

(m+1)
°°°p/(m+1)¸ .

By Lemma 2.2.1, we can choose j such that

ω(tj−1, tj+1) ≤
½

2
r−1ω(s, t) r ≥ 3,
ω(s, t) r = 2,

for the dissection D = {s = t0 < t1 < · · · < tr = t}. Now let D0 = D\{tj} with
this point tj chosen above carefully.

By algebraic computations with the multiplicative property, we have

eXD
s,t − eXD0

s,t =

Ã
0, . . . ,0,

mX
i=1

Xi
tj−1,tj ⊗X

(m+1)−i
tj ,tj+1

!
.

Therefore,

E

∙°°°( eXD
s,t − eXD0

s,t )
(m+1)

°°°p/(m+1)¸ (Note that p
m+1 < 1.)

≤
mX
i=1

E

∙°°°Xi
tj−1,tj

°°°p/(m+1) °°°Xm+1−i
tj ,tj+1

°°°p/(m+1)¸

≤
mX
i=1

E

∙°°°Xi
tj−1,tj

°°°p/i¸ i
(m+1)

E

∙°°°X(m+1−i)
tj ,tj+1

°°°p/(m+1−i)¸ (m+1−i)
(m+1)
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≤
mX
i=1

(ciω(tj−1, tj))
i

m+1 (cm+1−iω(tj , tj+1))
m+1−i
m+1

=
mX
i=1

c
i/(m+1)
i c

(m+1−i)/(m+1)
m+1−i

³
ω(tj−1, tj)

i/(m+1)ω(tj , tj+1)
(m+1−i)/(m+1)

´θ
,

by Hölder’s inequality and our assumption.
Note that

ω(tj−1, tj) ≤ ω(tj−1, tj+1), ω(tj , tj+1) ≤ ω(tj−1, tj+1),

and take cm+1 such that

mX
i=1

c
i/(m+1)
i c

(m+1−i)/(m+1)
m+1−i ≤ cm+1.

Then we have

E

∙°°°( eXD
s,t − eXD0

s,t )
(m+1)

°°°p/(m+1)¸ ≤ cm+1ω(tj−1, tj+1)θ.
Recall that we chose tj carefully. Successively dropping points, we have that

E

∙°°°( eXD
s,t − eXD0

s,t )
(m+1)

°°°p/(m+1)¸ ≤ cm+1

(
1 +

∞X
r=3

µ
2

r − 1

¶θ)
ω(s, t)θ

≤ C(θ) cm+1 ω(s, t)
θ,

where C(θ) is a finite constant, which is independent on the choice of the dis-

section D. Then we have got our basic estimate, which assure that eXD is a
Cauchy sequence as mesh(D) goes to 0. In fact, we can follow the argument in
the original ”First Theorem” as follows.

Consider two dissection D and D0 such that mesh(D) < δ and mesh(D0) < δ.
We can take a common refinement D̂ of D and D0. Fix some interval [tj , tj+1] ∈
D. Then, D̂ breaks the interval into tj ≤ sj1 ≤ · · · ≤ sjr = tj+1, say D̂j . Now
we know that

E

∙°°° eXD̂j − eX°°°p/(m+1)¸ ≤ c
X
j

ω(tj , tj+1)
θ

≤ c

⎛⎝X
j

ω(tj , tj+1)

⎞⎠ ·max
j

ω(tj , tj+1)
θ−1

≤ cω(s, t)max
j

ω(tj , tj+1)
θ−1,

which is independent on D̂. Then it converges uniformly to 0 as mesh(D)→ 0.
Therefore, the triangle inequality

E

∙°°° eXD − eXD0
°°°p/(m+1)¸ ≤ E ∙°°° eXD − eXD̂j

°°°p/(m+1)¸+E ∙°°° eXD̂j − eXD0
°°°p/(m+1)¸
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shows that we have established the Cauchy sequence.
Only difference between the original estimate and ours is that our limit is in

the sense of

E

∙°°° eXD − eXD0
°°°p/(m+1)¸→ 0 as mesh(D) and mesh (D0) go to 0.

But, since p/(m+ 1) < 1 and so we have the triangle inequality, we can mimic
the usual argument for completeness of γ-th integrable function space. In this
sense of the limit, we have also

lim eXD,[s,t] = lim( eXD,[s,u] ⊗ eXD,[u,t]) = (lim eXD,[s,u])⊗ (lim eXD,[u,t]),

which shows the limit is multiplicative.

Let us show the uniqueness of the extension. More precisely, we must show
that any two multiplicative functional Xst and Yst agree almost surely, if they
agree up to m-th degree (i.e., Xi

st = Y
i
st, i ≤ m) and if their expectations satisfy

our condition in our theorem.
Set Ψst = X

m+1
st − Y m+1st . By Lemma 2.2.3, we know that Ψst is additive:

Ψs,t +Ψt,u = Ψs,u.

Now we have that

E
h
kΨ0t −Ψ0skp/(m+1)

i
= E

h
kΨstkp/(m+1)

i
≤ cω(s, t)θ,

for a constant c and θ > 1. Note that

ω(s, t) ≤ ω(0, t)− ω(0, s),

and that ω is an increasing function. So we can apply time change to have

E
h
kΨ0t0 −Ψ0s0kp/(m+1)

i
≤ c (t0 − s0)

in this time scale. The key is that any time change does not change the varia-
tional norm.

Now, by the dyadic argument in Hambly-Lyons ([2]), we have

sup
D

X
j

kΨ0,t0j+1 −Ψ0,t0jk
p/(m+1)

≤ 2
∞X
n=1

X
0≤k<2n

kΨ0,(k+1)/2n −Ψ0,k/2nkp/(m+1)

with the triangle inequality (p/(m+ 1) < 1). Taking the expectation,

E

⎡⎣sup
D

X
j

kΨ0,tj+1 −Ψ0,tjkp/(m+1)
⎤⎦
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≤ 2
∞X
n=1

X
0≤k<2n

E
h
kΨ0,(k+1)/2n −Ψ0,k/2nkp/(m+1)

i
≤ 2c

∞X
n=1

X
0≤k<2n

¯̄̄̄
k + 1

2n
− k

2n

¯̄̄̄θ

= 2c
∞X
n=1

X
0≤k<2n

1

2nθ
= 2c

∞X
n=1

1

2n(θ−1)
<∞.

Therefore, we have almost surely

kΨ0,tkp/(m+1)−var <∞,

on [0, 1]. We conclude that Ψ0,t ≡ 0, so X = Y almost surely.
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