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1 A problem, an answer, and two ideas

We consider the Fourier transform type integral of a rough path. Our main
interest is the rough path property of the integral.

Let F : R → R be a continuous path with global finite p-variation controlled
by a control function ωF for 1 ≤ p, i.e.,

|F (t) − F (s)|p ≤ ωF (s, t) < M < +∞

for any −∞ < s < t < ∞ and a real number M .
Let us define the Fourier type integral Gθ(t) by dGθ = eiθtdFt, that is,

Gθ(t) − Gθ(s) =
∫ t

s

eiθtdFt for s < t.

Then Gθ(t) is a p-rough path defined locally on each finite interval. Take p′ ≥ p
and let ωGθ = ωGθ,(p′,θ) be the control function for the p′-variation of Gθ.

The problem is

Problem 1 Is ωGθ,(p′,θ) globally finite for almost every θ? Or more directly,

ωGθ,(p′,θ)(−∞, +∞) is finite for a.e. θ ?
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If we imagine the pointwise convergence of Fourier transform, this problem
is far from obvious. We will show the following theorem as a partial result:

Theorem 2 Suppose that 1 ≤ p < 2 and F is a geometric rough path with
p-variation controlled by ωF , where ωF (−∞,∞) < M < ∞ for a constant M .
If p < p′ < 2, then the p′-variation ωGθ,(p′,θ) of Gθ is finite for almost every θ.

Our idea to show the theorem is two-fold: to estimate of the expectation of
the integral with Young’s idea (Section 2) and to apply Hambly-Lyons’ dyadic
argument with the estimate and some modification (Section 3).

First we will get an estimate for the second moment of the integral
∫ T

S
eiθtdFt

with Gaussian θ, that is,

E

∣∣∣∣∣
∫ T

S

eiθtdFt

∣∣∣∣∣
2
 =

∫ T

S

∫ T

S

e−(t−s)2/2dFsdFt ≤ CωF (S, T )2/p.

This estimate is not innocent as it looks. Actually we will use Young’s argument
carefully in the real plane R2 according to [2] (Lyons 1981).

Secondly we use this estimate to apply Hambly-Lyons’ dyadic argument (see
[1] (Hambly-Lyons 1998)). Roughly saying, this argument is to paste the es-
timates on dyadic intervals like [k/2n, (k + 1)/2n](k = 0, . . . , 2n − 1) in some
clever way to get an estimate on the whole interval. But we need to modify this
argument a little because Hambly-Lyons’ trick works on the unit interval [0, 1]
and our integral is defined on the real line R on the other hand. For this, we
will take a time change ρ : [0, 1] → R suitably (according to ωF ) and we will
check that our estimate for

E

∣∣∣∣∣
∫ ρ((k+1)/2n)

ρ(k/2n)

eiθtdFt

∣∣∣∣∣
2


is sharp enough for the dyadic argument to work in the following manner:

E

∣∣∣∣∣
∫ ρ((k+1)/2n)

ρ(k/2n)

eiθtdFt

∣∣∣∣∣
p′ ≤ E

∣∣∣∣∣
∫ ρ((k+1)/2n)

ρ(k/2n)

eiθtdFt

∣∣∣∣∣
2
p′/2

≤ (const) · ωF

(
ρ

(
k + 1
2n

)
, ρ

(
k

2n

))(2/p)·(p′/2)

≤ (const) · ωF

(
ρ

(
k + 1
2n

)
, ρ

(
k

2n

))p′/p

.

Now using the fact that we properly chose the time change ρ according to the
control ωF and that p < p′ < 2, we will finally get the result thanks to Hambly-
Lyons’ dyadic argument.
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2 Controlling the second moment

2.1 the second moment when θ is Gaussian

We want to use the expectation for θ to estimate
∫ T

S
eiθtdFt. It is natural to

choose the Gaussian distribution for θ (with the mean 0 and the variance σ2)
because this should minimize the effect of the tail of large θ and also because it
allows us to get a nice representation of the second moment of

∫ T

S
eiθtdFt.

Suppose F is a geometric p-rough path which is constant outside the interval
[S, T ]. Then

∫ t

S
eiθudFu is well defined as a geometric rough path defined for

each θ. We concern the p-variation estimate of this integral. But we approach
to it with the second moment. Let us denote the expectation with respect to
the Gaussian variable θ by Eθ. We have the following lemma.

Lemma 3

Eθ

∣∣∣∣∣
∫ T

S

eiθudFu

∣∣∣∣∣
2
 =

∫ T

S

∫ T

S

e−(t−s)2σ2/2dFsdFt.

Proof. By Fubini’s theorem and simple computations, we have

Eθ

∣∣∣∣∣
∫ T

S

eiθsdFs

∣∣∣∣∣
2
 = Eθ

[∫ T

S

eiθsdFs

∫ T

S

e−iθtdFt

]

=
∫ T

S

∫ T

S

Eθ
[
eiθ(s−t)

]
dFsdFt

=
∫ T

S

∫ T

S

e−(t−s)2σ2/2dFsdFt,

where the last equation is a simple Gaussian property that Eeiθt = e−t2σ2/2.

Remark 4 The simple case σ2 = 1 is enough to show our result. But this little
generalization would be useful when we go further.

2.2 the estimate in the off-diagonal box

Now we want to estimate the Gauss type integral
∫ T

S

∫ T

S
e−(t−s)2dFtdFs. Though

it might seem innocent, this procedure is not easy. Since the diagonal seems
to be needed special treatment, we first show the following estimate in the off-
diagonal box.

Lemma 5 Suppose that F and G are p-rough paths controlled by ωF and ωG

respectably, which are both globally finite, i.e., ωF (−∞,∞), ωG(−∞,∞) < M <
∞ for some constant M . Suppose futher that ωF (0,∞) = ωG(−∞, 0) = 0 (,
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which means that F is constant on the right half line and G is constant on the
left half line). Then, we have the following estimate:∫

R

∫
R

e−(t−s)2σ2/2dFsdGt ≤ C · ωF (−∞,∞)1/pωG(−∞,∞)1/p,

for a constant C > 0.

Since the integral above does not contain the diagonal {s = t}, the result is
a direct consequence of the following theorem by T.J.Lyons [2]:

Theorem 6 (T.J.Lyons (1981)) Let 1/p + 1/q > 1. If f is of finite q-
variation controlled by ωf and g is of finite p-variation controlled by ωg, then
the integral zt =

∫ t

0
f(s)dg(s) has its p-variation controlled by

(∥f∥∞ + C1/p+1/q ωf (0, t)1/q)pωg(0, t).

Therefore, in particular if f has bounded 1-variation and we take q = 1, the
variation is at most (∥f∥∞ + C1/p+1 ωf (0, t))pωg(0, t). Using this fact twice, we
can give a proof of the lemma above as follows.

Proof. (Proof of Lemma 5).
Since Fs has bounded variation, it has a limit as s → −∞. Therefore, we can

apply a suitable time change s 7→ −s to make it run backwards. Let us denote
the backward function by F̃s. Note that this time change does not change the
shape of the path, so it is a p-rough path again. Then, we have∫

R

∫
R

e−(t−s)2σ2/2dFsdGt =
∫

t>0

∫
s<0

e−(t−s)2σ2/2dFsdGt

=
∫

t>0

∫
s>0

e−(t+s)2σ2/2dF̃sdGt

≤ C · ωF̃ (−∞,∞)1/pωG(−∞,∞)1/p

= C · ωF (−∞,∞)1/pωG(−∞,∞)1/p,

if we can show the inequality above in the middle.
Therefore, our task is to estimate∫ ∞

0

(∫ ∞

0

e−(t+s)2σ2/2dXs

)
dYt

for a p-rough paths X,Y controlled by global bounded control functions ωX , ωY

respectively defined on [0,∞].
According to Theorem 6, It is enough to control the uniform norm and

1-variation of
Z(t) =

∫ ∞

0

e−(t+s)2σ2/2dXs.

First we check the uniform bound. Certainly the integral above makes sense
since the integrand s 7→ exp(−(t+s)2σ2/2) is bounded and has globally bounded
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1-variation thanks to Theorem 6 above. More precisely, we have the Young
integral bound at t > 0 and taking the supremum over t > 0, we get

|Z(t)| =
∣∣∣∣∫ ∞

0

e−(t+s)2σ2/2dXs

∣∣∣∣ ≤ ωX(0,∞)1/p(e−t2σ2/2 + C1/p+1e
−t2σ2/2)

≤ ωX(0,∞)1/p(1 + C1/p+1) e−t2σ2/2

≤ ωX(0,∞)1/p(1 + C1/p+1),

because the supremum norm and the 1-variational norm of s 7→ e−(s+t)2σ2/2 are
less than or equal to e−(t+0)2σ2/2. So we have got the uniform bound of |Z(t)|.

Next, to estimates the 1-variational norm for Z(t), we study the derivative
of Z(t):

Z(t)′ =
∫ ∞

0

−(t + s)σ2 e−(t+s)2σ2/2dXs.

Let us denote the integrand by −z(t), i.e.,

z(t) = (t + s)σ2 e−(t+s)2σ2/2 (t > 0),

to see the behaviour closely. Simple calculation shows

z′(t) = σ2e−(t+s)2σ2/2
(
1 − σ2(t + s)2

)
.

Therefore, we have two cases. If 0 ≤ s ≤ 1/σ, the maximum of z(t) occurs
exactly once when (t + s)2σ2 = 1 and the maximal value is z(1/σ − s) =
1/σ · σ2e−1/2 = σe−1/2. On the other hand, if s > 1/σ, the function z(t) is
monotone and the maximal value is z(0) = sσ2e−s2σ2/2. This observation with
Theorem 6 allows us to estimate of the integral Z ′(t) as follows.

|Z ′(t)| =
∣∣∣∣∫ ∞

0

−(t + s)σ2e−(t+s)2σ2/2dXs

∣∣∣∣
≤

{
ωX(0,∞)1/p(1 + C1/p+1)σe−1/2, if t ≤ 1/σ,
ωX(0,∞)1/p(1 + C1/p+1)tσ2e−t2σ2/2, if t > 1/σ.

Since |Z(v)−Z(u)| =
∣∣∫ v

u
Z ′(t)dt

∣∣ ≤ ∫ v

u
|Z ′(t)|dt, we can get the bound of the 1-

variation of Z(t) with the estimate above for |Z ′(t)| as follows. For any sequence
0 ≤ t0 < t1 < t2 < · · · < ∞, we have∑

j

|Z(tj+1) − Z(tj)| ≤
∑
j<k

|Z(tj+1) − Z(tj)| + |Z(1/σ) − Z(tk)|

+ |Z(tk+1) − Z(1/σ)| +
∑

j≥k+1

|Z(tj+1) − Z(tj)|

≤ ωX(0,∞)1/p(1 + C1/p+1)σe−1/2 1
σ

+ωX(0,∞)1/p(1 + C1/p+1)σ2

∫ ∞

1/σ

te−t2σ2/2dt

= 2ωX(0,∞)1/p(1 + C1/p+1)e−1/2.
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Therefore, the 1-variation of Z(t) =
∫ ∞
0

exp(−(t + s)2σ2/2)dXs is at most
2ωX(0,∞)1/p(1 + C1/p+1)e−1/2.

Therefore, we have the estimates for the supremum norm and 1-variation
norm of Z(t). Finally applying Theorem 6 to

∫ ∞
0

Z(t)dYt again, we get∣∣∣∣∫ ∞

0

∫ ∞

0

e−(t+s)2σ2/2dXsdYt

∣∣∣∣ =
∣∣∣∣∫ ∞

0

Z(t)dYt

∣∣∣∣
≤ ω

1/p
Y (0,∞)

(
(1 + C1/p+1)ω

1/p
X (0,∞) + C1/p+1(1 + C1/p+1)2e−1/2ω

1/p
X (0,∞)

)
≤ Cω

1/p
X (0,∞)ω1/p

Y (0,∞)

for some constant C. We have finished the proof.

2.3 The essential trick and the estimate in R2

Now we apply our estimate on the off-diagonal box to the whole integral by using
Young’s trick as developed in [2] (Lyons 1981). In usual Young’s argument to
define Young’s integral, we choose carefully a removing point sj in succession
from the partition s0 < s1 < · · · < sn of the interval on which the integral is
defined. Roughly saying, here we use the similar idea in the 2 dimension.

We prepare the following definition for the procedure.

Definition 7 Let D = {s0 = −∞ < s1 < s2 < · · · < sr = +∞} be a finite
partition of R and consider the domain ∆(S, T ) = {(s, t) : S ≤ s < t ≤ T},
and the domain ∆D = ∆(−∞,∞) \ ∪i=1,...,r∆(si−1, si). We define the D-
approximate integral

ID =
∫ ∫

∆D

e−(t−s)2σ2/2dFsdGt.

We show the next theorem with Young’s trick and the key lemma (Lemma
5) deduced in the last subsection.

Theorem 8 Suppose that 1 ≤ p < 2. Then the following estimate holds.

|ID| ≤ CωF (−∞,∞)1/pωG(−∞,∞)1/p,

for some constant C.

Proof. Without loss of generality, we can rescale F and G such that ωF (−∞,∞) =
ωG(−∞,∞). Let ω = ωF + ωG. (So ω controls the both of F and G.) If r = 1,
i.e., D is (−∞,∞), then ∆D is empty , |ID| = 0, and no problem. Otherwise,
there is an i such that

ω(si−1, si+1) ≤
{

2ω(−∞,∞)
r−2 if r > 2,

ω(−∞,∞) if r = 2.
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Let D′ = D \ {si}. Then

ID − ID′
=

∫ ∫
∆D\∆D′

e−(t−s)2σ2/2dFsdGt

= 2
∫ ∫

[si−1,si]×[si,si+1]

e−(t−s)2σ2/2dFsdGt.

(See Figure 1.)

s
si−1 si si+1

si−1

si

si+1

-

6

t

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

s = t

Figure 1: Young’s trick in 2 dimension

Now we apply Lemma 5 to this integral on the off-diagonal box and deduce
that

|ID − ID′
| ≤

∣∣∣∣∣
∫

2
∫

[si−1,si]×[si,si+1]

e−(t−s)2σ2/2dFsdGt

∣∣∣∣∣
≤ CωF (si−1, si)1/pωG(si, si+1)1/p

≤ C ′
(

ω(−∞,∞)
r − 2

)2/p

.
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Since p < 2, we can sum up these estimates to get

|ID| ≤ C ′22/p

(
1 +

∞∑
r=2

(
2
r

)2/p
)

ωF (−∞,∞)1/pωG(−∞,∞)1/p,

uniformly in D.

The following is the direct consequence of this uniform bound.

Corollary 9 If F and G are of uniformly bounded p-variation for 1 ≤ p < 2
on R, the integral

∫
R

∫
R exp(−(t − s)2σ2/2)dFsdGt makes sense and it has the

bound∣∣∣∣∫
R

∫
R

e−(t−s)2σ2/2dFsdGt

∣∣∣∣ ≤ (const.)ωF (−∞,∞)1/pωG(−∞,∞)1/p.

Proof. Since we have already the uniform bound, the rest is a standard ap-
proximation argument to get the Cauchy sequence. Let FR and GR be the
truncated path of F,G on [−R,R]. More precisely, FR = F on [−R,R] and
FR = 0 on [−R,R]c. Notice that FR converges to F in p-variation, be-
cause the variation of FR is monotone and bounded as R → ∞. The integral∫ ∫

exp(−(t−s)2σ2/2)dFRdGR is well-defined as a usual Young’s integral (here
we use that p < 2). On the other hand, the theorem above assures

sup
D

∣∣∣∣∫ ∫
∆D

e−(t−s)2σ2/2dFR
s dGR

t −
∫ ∫

∆D

e−(t−s)2σ2/2dFsdGt

∣∣∣∣
≤ (const.)∥FR − F∥p∥GR − G∥p.

Therefore, the Cauchy sequence for two partitions D1 and D2∣∣∣∣∫ ∫
∆D1

e−(t−s)2σ2/2dFsdGt −
∫ ∫

∆D2

e−(t−s)2σ2/2dFsdGt

∣∣∣∣
converges as the mesh of the partitions goes to zero considering the triangle
inequality with the approximation above.

3 Applying Hambly-Lyons’ dyadic argument

3.1 Recall Hambly-Lyons’ dyadic argument

Let us recall the Hambly-Lyons’s dyadic argument. The following theorem
proved by Hambly and Lyons in ([1] 1998) shows the power in condensed form.
We show only the statement.

Lemma 10 (B.Hambly and T.J.Lyons (1998)) Suppose that (Xk
s,t) is a con-

tinuous multiplicative functional on ∆(0, 1). Then there exists a constant C(p)
such that (Xk

s,t) will have finite p-variation on [0, 1] if

∞∑
n=0

nC(p)
2n∑

k=1

max
l≤p

∣∣∣∣X l

(
k

2n

)
− X l

(
k + 1
2n

)∣∣∣∣p/l

< ∞.
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We will use this lemma to deduce the finiteness of p′-variation of Gθ with the
estimate of the expectation. The hypothesis of the lemma is clearly satisified
for almost all choice of a random X if

E

[ ∞∑
n=0

nC(p)
2n∑

k=1

max
l≤p

∣∣∣∣X l

(
k

2n

)
− X l

(
k + 1
2n

)∣∣∣∣p/l
]

< ∞,

which is easily verified almost surely if the random variable above has finite
expectation.

But our object Gθ is defined on R that is a non compact interval instead
of the compact interval [0, 1]. Therefore we need a little work to adjust the
situation.

3.2 A proper time change

To adjust our functions to Hambly-Lyons’ lemma, we prepare a suitable time
change. Our time change should be not only a map from [0, 1] to R, but also go
well with a control function.

Lemma 11 If ω is a control function where ω(−∞,∞) < M < ∞ for a con-
stant M , then there exists a continuous strictly increasing function ρ : [0, 1] →
[−∞,∞] with the property that

ω(ρ(u), ρ(v)) ≤ M |u − v|.

Proof. Let τ(t) = ω(−∞, t), then τ is continuous and increasing with values
in [0,M ]. By the super-additivity of ω, we have

ω(−∞, s) + ω(s, t) ≤ ω(−∞, t).

Therefore,

ω(s, t) ≤ ω(−∞, t) − ω(−∞, s)
= |ω(−∞, t) − ω(−∞, s)|
= |τ(t) − τ(s)|.

For any ϵ > 0, take any function τ̃ : [−∞,∞] → [0, ϵ] that is strictly increas-
ing, continuous, and onto. Note that

ω(s, t) ≤ |(τ(t) + τ̃(t)) − (τ(s) + τ̃(s))|.

As τ + τ̃ is one to one, continuous, and takes −∞ to 0 and ∞ to M + ϵ, it
is onto and has a continuous inverse function. We rescale this inverse and set
ρ : [0, 1] → [−∞,∞] to be the inverse of (τ + τ̃)/(M + ϵ). That is,

(τ + τ̃)(ρ(u)) = (M + ϵ)u.
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In other words, we have

ω(ρ(u), ρ(v)) ≤ (M + ϵ)|u − v|

as claimed in the lemma.
By this simple lemma, we can adjust our situation to Hambly-Lyons’ ar-

gument. If F has finite p-variation with the control ωF , then it has finite
p′-variation for any p′ > p and we have

|F (t) − F (s)|p
′
≤ ωF (s, t)p′/p.

Since we chose p′/p > 1, ω(s, t)p′/p is also a control function.
Under the time change ρ we prepared in lemma above, we have

|F (ρ(v)) − F (ρ(u))| ≤ (M + ϵ)1/p|u − v|1/p

≤ (M + ϵ)1/p|u − v|1/p−1/p′
|u − v|1/p′

≤ (M + ϵ)1/p|u − v|1/p′
,

which is the property we need.

3.3 Putting all together

Now we have done all preparation. Finally, we apply Hambly-Lyons’ lemma
with a proper time change to our fundamental estimate.

Recall the consequence in Section 2 as the following truncated version. This
is a trivial corollary if we consider F whose is constant outside the interval
[S, T ].

Theorem 12 Suppose that F is a continuous path on R with bounded p-variation
for 1 ≤ p < 2. Let ωF be the control function that ω(−∞,∞) < M < ∞ for
some constant M . Then, for any −∞ ≤ S < T ≤ ∞, we have

Eθ

∣∣∣∣∣
∫ T

S

eiθudFu

∣∣∣∣∣
2
 =

∣∣∣∣∣
∫ T

S

∫ T

S

e−(t−s)2σ2/2dFsdFt

∣∣∣∣∣ ≤ D(p)ωF (S, T )2/p,

where D(p) is a constant depending only on p.

Therefore, we have the key estimate:

Eθ

∣∣∣∣∣
∫ ρ((k+1)/2n)

ρ(k/2n)

eiθtdFu

∣∣∣∣∣
2
p′/2

=

∣∣∣∣∣
∫ ρ((k+1)/2n)

ρ(k/2n)

∫ ρ((k+1)/2n)

ρ(k/2n)

e−(t−s)2σ2/2dFsdFt

∣∣∣∣∣
p′/2

≤ D(p)
(

ωF

(
k

2n
,
k + 1
2n

))(2/p)(p′/2)
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≤ D(p)
(

ωF (−∞,∞)
2n

)(2/p)(p′/2)

= D(p)ωF (−∞,∞)p′/p · 2−n(p′/p),

where we used the super-additivity of ωF in the second inequality. Here it is
very crucial to get the order 2−n(p′/p) for p′ > p. This order assures us to satisfy
the assumption of Hambly-Lyons’ lemma in Section 3 as follows:

Eθ

[ ∞∑
n=0

nC(p′)
2n∑

k=1

∣∣∣∣Gθ

(
ρ

(
k

2n

))
− Gθ

(
ρ

(
k + 1
2n

))∣∣∣∣p′]

≤ D(p)ωF (−∞,∞)p′/p
∞∑

n=0

nC(p′)2n(1−(p′/p)) < ∞

by Beppo-Levy. We have checked the assumption of Hambly-Lyons’ lemma for
the almost surely paths. Therefore, the time-changed path Gθ(ρ(·)) has uni-
formly finite p′-variation by Hambly-Lyons’ dyadic argument. Since the varia-
tion does not depend on any time-change, we reach the conclusion.
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