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1 A problem, an answer, and two ideas

We consider the Fourier transform type integral of a rough path. Our main
interest is the rough path property of the integral.

Let F': R — R be a continuous path with global finite p-variation controlled
by a control function wg for 1 < p, i.e.,

|F(t) — F(s)|P <wp(s,t) < M < 400

for any —oo < s < t < oo and a real number M.
Let us define the Fourier type integral GY(t) by dG® = e®*dF;, that is,

¢
Go(t) — G%(s) = / etdF, for s <t.

Then G?(t) is a p-rough path defined locally on each finite interval. Take p’ > p
and let wge = wgo (,r,9) be the control function for the p'-variation of GY.
The problem is

Problem 1 Is wgo (,y gy globally finite for almost every 87 Or more directly,

wao (pr,0)(—00, +00) is finite for a.e. 6 7



If we imagine the pointwise convergence of Fourier transform, this problem
is far from obvious. We will show the following theorem as a partial result:

Theorem 2 Suppose that 1 < p < 2 and F is a geometric rough path with
p-variation controlled by wg, where wp(—o00,00) < M < oo for a constant M.
If p < p' <2, then the p'-variation wge (y gy of GY is finite for almost every 0.

Our idea to show the theorem is two-fold: to estimate of the expectation of
the integral with Young’s idea (Section 2) and to apply Hambly-Lyons’ dyadic
argument with the estimate and some modification (Section 3).

First we will get an estimate for the second moment of the integral f ST eWtdF,
with Gaussian 6, that is,

T .
/ ethdFt
S

This estimate is not innocent as it looks. Actually we will use Young’s argument
carefully in the real plane R? according to [2] (Lyons 1981).

Secondly we use this estimate to apply Hambly-Lyons’ dyadic argument (see
[1] (Hambly-Lyons 1998)). Roughly saying, this argument is to paste the es-
timates on dyadic intervals like [k/2™,(k 4+ 1)/2"](k = 0,...,2™ — 1) in some
clever way to get an estimate on the whole interval. But we need to modify this
argument a little because Hambly-Lyons’ trick works on the unit interval [0, 1]
and our integral is defined on the real line R on the other hand. For this, we
will take a time change p : [0,1] — R suitably (according to wp) and we will
check that our estimate for

2 T T R
E :/ / e~ =) 2dFdF, < Cwp(S,T)?.
S S

2

p((k+1)/2%)
E / ezgtdFt
p

(k/2m)

is sharp enough for the dyadic argument to work in the following manner:

" p/ n 2 p//2
p((k+1)/2™) p((k+1)/2™)
E / e dF, < E / e dF,
p(k/2m) p(k/2m)
k1 k (2/p)-(¥"/2)
< oo (o (55) 0 (50))
k1 k p'/p
< omon (o(5) o))"

Now using the fact that we properly chose the time change p according to the
control wr and that p < p’ < 2, we will finally get the result thanks to Hambly-
Lyons’ dyadic argument.



2 Controlling the second moment

2.1 the second moment when 0 is Gaussian

We want to use the expectation for 6 to estimate fST eWtdF,. Tt is natural to
choose the Gaussian distribution for 6 (with the mean 0 and the variance o?)
because this should minimize the effect of the tail of large 6 and also because it
allows us to get a nice representation of the second moment of |, g et dF,.

Suppose F' is a geometric p-rough path which is constant outside the interval
[S,T]. Then [, ; e dF, is well defined as a geometric rough path defined for
each #. We concern the p-variation estimate of this integral. But we approach
to it with the second moment. Let us denote the expectation with respect to
the Gaussian variable § by EY. We have the following lemma.

Lemma 3
T 2 T T
E? / eudF, - / / e~ (=920 4.
s s Js

Proof. By Fubini’s theorem and simple computations, we have
T T T
/ e dF, / e’edes/ e qF,
S S S
T T _
= / / o [e“’@*ﬂ] dF,dF,
S S

T T 5 9
= //e_(t_s)"/QdFSdFt,
S S

0t _

2

E’ = E

2 2
ta/2. -

where the last equation is a simple Gaussian property that Ee e

Remark 4 The simple case 02 = 1 is enough to show our result. But this little
generalization would be useful when we go further.

2.2 the estimate in the off-diagonal box

Now we want to estimate the Gauss type integral | ST /. ST e~ (=9 qF,dF,. Though
it might seem innocent, this procedure is not easy. Since the diagonal seems
to be needed special treatment, we first show the following estimate in the off-
diagonal box.

Lemma 5 Suppose that F' and G are p-rough paths controlled by wp and wg
respectably, which are both globally finite, i.e., wp(—00,00),wa(—00,00) < M <
oo for some constant M. Suppose futher that wp(0,00) = wg(—00,0) = 0 (|



which means that F is constant on the right half line and G is constant on the
left half line). Then, we have the following estimate:

//6_(t—8)202/2dF5th < O - wr(—00,00)Pwg(—00,00) V7,

for a constant C > 0.

Since the integral above does not contain the diagonal {s = t}, the result is
a direct consequence of the following theorem by T.J.Lyons [2]:

Theorem 6 (T.J.Lyons (1981)) Let 1/p + 1/q > 1. If f is of finite q-
variation controlled by wf and g is of finite p-variation controlled by wy, then

the integral z; = fo ) has its p-variation controlled by

(I flloe + Cl/p+1/q Wf(O, t)l/q)pwg(oa t).

Therefore, in particular if f has bounded 1-variation and we take ¢ = 1, the
variation is at most (|| f||ec + C1/p+1 wr(0,1))Pwy(0,¢). Using this fact twice, we
can give a proof of the lemma above as follows.

Proof. (Proof of Lemma 5).

Since F has bounded variation, it has a limit as s — —oo. Therefore, we can
apply a suitable time change s — —s to make it run backwards. Let us denote
the backward function by F,. Note that this time change does not change the
shape of the path, so it is a p-rough path again. Then, we have

/ / e~ (=24 p 4G, / / e~ (=24 E 4G,
R JR t>0Js<0
/ / e~ (T 24 f 4G,
t>0 Js>0

—00,00)YPwa(—o0, 00) /P

- c-wF<—oo,oo>1/pr<—oo,oo>”P7

if we can show the inequality above in the middle.
Therefore, our task is to estimate

/OO (/00 6(t+8)20'2/2dXs> d}/t
0 0

for a p-rough paths X, Y controlled by global bounded control functions wx , wy
respectively defined on [0, 00].

According to Theorem 6, It is enough to control the uniform norm and
1-variation of

o0 2 _2
Z(t):/ et 2 x
0

First we check the uniform bound. Certainly the integral above makes sense
since the integrand s — exp(—(t+s)20?%/2) is bounded and has globally bounded



1-variation thanks to Theorem 6 above. More precisely, we have the Young
integral bound at ¢ > 0 and taking the supremum over ¢t > 0, we get

12()| = / e (TN,
0

IA

wy (07 w)l/p(€7t202/2 + Cl/p+1eft202/2)

IN

wx (0,00)/P(1+ Cyjpyr) e 007/

< wx(0,00)P(1 + Ci/pr1),
because the supremum norm and the 1-variational norm of s — e~ (s+0%0%/2 apo
less than or equal to e~ (#+9)777/2 S0 we have got the uniform bound of | Z(t)|.

Next, to estimates the 1-variational norm for Z(t), we study the derivative
of Z(t):

Z(t) = /Oo —(t+ s)o? e T2 x|
Let us denote the integrand 1f)y —z(t), i.e.,
2(t) = (t+ s)o2 e 7712 (15 0),
to see the behaviour closely. Simple calculation shows
2 (t) = o2e (tHH9)%0%/2 (1-0(t+s)?).

Therefore, we have two cases. If 0 < s < 1/0, the maximum of z(t) occurs
exactly once when (t + s)202 = 1 and the maximal value is z(1/o — 5) =
1/o - 0%e71/?2 = ge~/2. On the other hand, if s > 1/, the function z(t) is
monotone and the maximal value is z(0) = so2e~% 9"/2. This observation with

Theorem 6 allows us to estimate of the integral Z'(t) as follows.

1Z'(1)] =

/oo _(t n 8)0_26—(t+5)202/2dXs
0

wx (0,00)V/P(1 4+ Cy jpy1)oe™ /2, ift <1/o,
wx (0,00) /P(1 + Cy jpyr)to®e 712 ift > 1/0.
Since |Z(v) — Z(u)| = | [ Z'(t)dt| < [ |Z'(t)|dt, we can get the bound of the 1-

variation of Z(t) with the estimate above for |Z’(t)| as follows. For any sequence
0<ty <ty <ty <---< o0, we have

SoIZ(ti) = Z(t) < D 1Z(ti) = Z(t)| + 1Z2(1/0) = Z(te)]
J j<k

+1Z(ter1) = ZA /o) + > |Z(tja) — Z(t;)
J>k+1

IN

_ 1
wx (0,00)/P(1 4 Oy jpy1)oe 1/25

o0
+wx (0,00)1P(1 +Cl/p+1)02/ te 1072y
1/o

= 2wx(0,00)"/P(1+ C’l/pﬂ)e*l/z.



Therefore, the 1-variation of Z(t) = [~ exp(—(t + s)?0?/2)dX, is at most
2wx (0,00)V/P(1 4+ Cy i1 )e V2.
Therefore, we have the estimates for the supremum norm and 1-variation
norm of Z(t). Finally applying Theorem 6 to fooo Z(t)dY; again, we get
(oo} oo
/ / e_(t+s)202/2dXSd}/t
o Jo

/0 h Z(t)dy;

< wy/7(0,00) (1+ Cayps)wl7(0,00) + Crjpia (1 + Crjpia)26 720X (0,00))
< Cwi{p(o, oo)cu}l,/p(O7 00)

for some constant C'. We have finished the proof. m

2.3 The essential trick and the estimate in R?

Now we apply our estimate on the off-diagonal box to the whole integral by using
Young’s trick as developed in [2] (Lyons 1981). In usual Young’s argument to
define Young’s integral, we choose carefully a removing point s; in succession
from the partition sy < s; < --- < s, of the interval on which the integral is
defined. Roughly saying, here we use the similar idea in the 2 dimension.

We prepare the following definition for the procedure.

Definition 7 Let D = {sg = —00 < $1 < s2 < -+ < 8 = +00} be a finite
partition of R and consider the domain A(S,T) = {(s,t) : S < s <t < T},
and the domain AP = A(—o0,00) \ Ui=1.. +A(si_1,8:). We define the D-

approximate integral
ID:// e~ (=924 4G,
AD

We show the next theorem with Young’s trick and the key lemma (Lemma
5) deduced in the last subsection.

Theorem 8 Suppose that 1 < p < 2. Then the following estimate holds.
ITP| < Cwp(—00,00)YPwg(—o0, 00)/P,
for some constant C.

Proof. Without loss of generality, we can rescale F and G such that wg(—00, 00) =
we(—00,00). Let w = wp + wg. (So w controls the both of F' and G.) If r = 1,
i.e., D is (—00,00), then AP is empty , |[I”| = 0, and no problem. Otherwise,
there is an ¢ such that

w(=00,00)

if r > 2
i—1,8i+1) < r—2 X ’
W(si-1;8i+1) < { w(—00,00) if r = 2.



Let D' = D\ {s;}. Then

ID _ ID' — // 67(2675)202/2ngth
AD\AD’

= 2 / / e~ (=% 12qF 4G,
[si—1,8:]%[s4,8i41]

(See Figure 1.)

Si4+1 1+

Si—14

Figure 1: Young’s trick in 2 dimension

Now we apply Lemma 5 to this integral on the off-diagonal box and deduce

that
/ 2/ e~ 244G,
[si—1,8:]%[84,8i+1]

< Cwp(sio1,8) Pwc(si, si01) P

o (“’(_Oo’oo)f/p.

17— 17
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Since p < 2, we can sum up these estimates to get

0 2/p
2
1P| < 092 (1 'y () ) (=50, 00)Pw(~o0,50) /7,

r=2

uniformly in D.
]
The following is the direct consequence of this uniform bound.

Corollary 9 If F and G are of uniformly bounded p-variation for 1 < p < 2
on R, the integral [, [ exp(—(t — s)?0?/2)dFdG; makes sense and it has the
bound

e~ =% 12qp 4G, | < (const.) wp(—o00, 00)Pwe(—o0, 00) /P,

Proof. Since we have already the uniform bound, the rest is a standard ap-
proximation argument to get the Cauchy sequence. Let F® and GF be the
truncated path of F,G on [~R, R]. More precisely, F* = F on [-R, R] and
FF = 0 on [-R,R]°. Notice that F converges to F in p-variation, be-
cause the variation of F® is monotone and bounded as R — oco. The integral
[ [ exp(—(t—s)%0?/2)dFRAG® is well-defined as a usual Young’s integral (here
we use that p < 2). On the other hand, the theorem above assures

// 7(t s) Q/QdFRdGR // —(t—s)%c 2/2dF th
AD AD

< (Const-)HFR = FlpIG" = Glly.

bup

Therefore, the Cauchy sequence for two partitions Dy and Do

’// e—<t—s)202/2dFsth—// e~ (t=9°7"/2gp 4,
AD1 AD2

converges as the mesh of the partitions goes to zero considering the triangle
inequality with the approximation above. m

3 Applying Hambly-Lyons’ dyadic argument

3.1 Recall Hambly-Lyons’ dyadic argument

Let us recall the Hambly-Lyons’s dyadic argument. The following theorem
proved by Hambly and Lyons in ([1] 1998) shows the power in condensed form.
We show only the statement.

Lemma 10 (B.Hambly and T.J.Lyons (1998)) Suppose that (X ,) is a con-
tinuous multiplicative functional on A(0,1). Then there exists a constant C(p)
such that (XF,) will have finite p-variation on [0,1] if

[eS) 2" p/l

ch(p) max | X' LS - X! kil
I<p AL 2n

n=0 k=1




We will use this lemma to deduce the finiteness of p’-variation of GY with the
estimate of the expectation. The hypothesis of the lemma is clearly satisified
for almost all choice of a random X if

p/l
< 00,

k+1
E C(p)E: l oyl
n Iln<a;<X( ) X ( on )

which is easily verified almost surely if the random variable above has finite
expectation.

But our object G? is defined on R that is a non compact interval instead
of the compact interval [0,1]. Therefore we need a little work to adjust the
situation.

3.2 A proper time change

To adjust our functions to Hambly-Lyons’ lemma, we prepare a suitable time
change. Our time change should be not only a map from [0, 1] to R, but also go
well with a control function.

Lemma 11 If w is a control function where w(—o0,00) < M < oo for a con-
stant M, then there exists a conlinuous strictly increasing function p : [0,1] —
[—00, 00| with the property that

w(p(u), p(v)) < Mu—vl.

Proof. Let 7(t) = w(—o00,t), then 7 is continuous and increasing with values
in [0, M]. By the super-additivity of w, we have

w(—00,8) + w(s,t) < w(—o0,t).
Therefore,
w(s,t) < w(—o00,t) —w(—00,s)
= |w(=00,t) — w(—00,s)|
= 7@ —7(s)l-

For any € > 0, take any function 7 : [—00, 00] — [0, €] that is strictly increas-
ing, continuous, and onto. Note that

w(s,t) < |(7(t) +7(t) = (7(s) + 7(s))I.

As T + T is one to one, continuous, and takes —oo to 0 and oo to M + ¢, it
is onto and has a continuous inverse function. We rescale this inverse and set
p:[0,1] — [—00, 0] to be the inverse of (7 + 7)/(M + €). That is,

(T+7)(p(w) = (M + €)u.



In other words, we have
w(p(u), p(v)) < (M + €)lu — v

as claimed in the lemma. m

By this simple lemma, we can adjust our situation to Hambly-Lyons’ ar-
gument. If F' has finite p-variation with the control wp, then it has finite
p’-variation for any p’ > p and we have

|[F(t) = F(s)[” < wp(s, t)7/7.

Since we chose p//p > 1, w(s,t)P'/? is also a control function.
Under the time change p we prepared in lemma above, we have

[F(p(v) = Fp(u)| < (M +¢)YPlu—o|'/?
(M+6)1/p|u7v|1/p71/p’|u7,u|1/p’
(M + &)YPlu — v|V/¥,

IN AN

which is the property we need.

3.3 Putting all together

Now we have done all preparation. Finally, we apply Hambly-Lyons’ lemma
with a proper time change to our fundamental estimate.
Recall the consequence in Section 2 as the following truncated version. This

is a trivial corollary if we consider F' whose is constant outside the interval
[, T7].

Theorem 12 Suppose that F is a continuous path on R with bounded p-variation

for 1 < p < 2. Let wp be the control function that w(—oo,00) < M < oo for
some constant M. Then, for any —oco < S < T < 0o, we have

T 2 T T S,
/ ezeudFu / / e—(t—s) o /QdFSdFt
S S S

where D(p) is a constant depending only on p.

]EG

< D(p)wr(S,T)%?,

Therefore, we have the key estimate:

p((k+1)/2")
/ ethdFu
p(k/2m)

2 p'/2

]EB

p((k+1)/2")  pp((k+1)/2") 2 v
/ / e~ (=) 2 dF;
p(k/2m) p(k/2m)

E ok+1 (2/p) (@' /2)
o) (o ( )

on’ 9n

IA
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wp(—00, 00

< D(p) < on

= D(p)wp(—00,00)? /P .27 /p),

) > (2/p)(0'/2)

where we used the super-additivity of wgr in the second inequality. Here it is
very crucial to get the order 2="®"/P) for p > p. This order assures us to satisfy
the assumption of Hambly-Lyons’ lemma in Section 3 as follows:

p/]

) 2m
/ k E+1
E? C(p) 0 ) ) —@?
S yle (o)) - (o (5
n=0 k=1

< D(p)wr(—00,00)? /P Z nC@Non(1=('/p)) ~ o

n=0

by Beppo-Levy. We have checked the assumption of Hambly-Lyons’ lemma for
the almost surely paths. Therefore, the time-changed path G?(p(-)) has uni-
formly finite p’-variation by Hambly-Lyons’ dyadic argument. Since the varia-
tion does not depend on any time-change, we reach the conclusion.
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